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1,4-Dioxane — What is it?

HO” N\ - ( ]

Ethylene glycol
1,4-dioxane

O#E]

|oxane 1 4‘

First produced commercially in 1929; largest demand
1950-1960 to stabilize methyl chloroform (Mohr et al,
2010)

Produced when ethylene glycol is heated and reacted
with a strong acid catalyst

Cyclic ether (C4H802) — highly stable ring
Clear, flammable, potentially explosive liquid
Specific gravity — 1.033 at 20°C

Boiling point - 101°C
Miscible in water and hydrophilic (remains in dissolved-
phase)

Very low Henry’s Law Constant of 4.88 x 10-6 (atm-m3/
mol)

1,4-Diethylene Dioxide, para-Dioxane, Diethylene Ether,
1,4-D
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1,4-Dioxane — How is used?

Stabilize chlorinated solvents —
e.g., 1,1,1-TCA

Paint strippers, wood glue, brake
cleaning fluids

Aircraft deicing fluid
Antifreeze production byproduct
Pesticides
Personal-care products
m Shampoos

m Detergents (pre-2013 Tide
contained 85 ppm)

m Baby hair and body washes

EER?&ENC[S Direct Uses of 1,4-Dioxane and its Occurrence

_ in By-products: Surfactant Examples, 2010
www sud e (ot mup
Detergents ma/kg Shampoos ma/kg
Tide Laundry Detergent g5 | Clairol ngbal Essence BodyEnvy 24
Aura Cacia Natural Aromatherapy Bubble
Ivory Snow Laundry Detergent N |gath 149
Tide Free Laundry Detergent 29" | Clairol Herbal Essences “Long Term
Purex Laundry Detergent 25 | Relationship Shampoo for Long Hair" 14
Gain 2X Ultra L De 2 Clairol Herbal Essence Drama 10
0 eh UirE aundry Uetergent Gerber Grins & Giggles Gentle & Mild
Cheer BrightCLEAN Detergent 20 | Aloe Vera Baby Shampoo 84
Era 2X Ultra Laundry Detergent 14 | Healthy Times "Baby’s Herbal Garden
. o Pansy Flower” Shampoo 82
Planet Ultra Liquid Detergent 6.1 Sea-Chi Organics Shampoo 75
Wisk 2X Ultra Laundry Detergent 3.9 | Others
Clorox Green Works Natural <0.2 Dgl Antibactenal Hand Soap 18
Disney “Clean as Can Bee’ Body Wash 8.8
Ecos Laundry Detergent <0.2 Sesame Street Bubble Bath 74
Sun Burst Laundry Detergent <0.2 More Info 2t ww 1-<4diuane com

1.4-Dloxans In consumer products as an Impurty of ethorytated surfactants (opm)
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1,4-Dioxane — Where is it in the Environment?

" Not readily in air - low volatility

" Not readily in soil vapor —
breaks down

" Not readily in soil — very low
sorption

" Primarily in surface water and
groundwater




1,4-Dioxane — Why is it in the Environment?

Waste disposal
sites

Leaking landfills
Household septic
systems
" Personal care
and household
products

WWTP:

®  Release to
surface water

® | and farmed
sludge

Pesticide
application




Regulatory Status

m USEPA finalized the human
health risk profile for 1,4-D in

2010
m No MCL as of 2016 Table 1 - Regulatory Guidelines for 1,4-Dioxane in Water
) State Guideline Concentration (ug/L)
m Listed on the Unregulated California Notification Level 1
Contaminant I\/Ionitoring Rule Colorado Drinking Water Standard  [3.2
(UCMR 3) for monitoring public [connecticut AT E
water systems (PWSs) 2012 Maine Maximum Exposure 4
Guideline
= MRL =0.07 “g/L Massachusetts Guideline 0.3
m B2 human CarCinogen New Hampshire Proposed Risk-Based 3
. . Remediation Value
-4
= USEPA 10 Ilfetlme cancer New York Dept. of Health Drinking Water Standard |50
risk =0.3 mg/L or 0.003 South Carolina Drinking Water Health 70
“g/L Advisory
u Some States are defaultlng to 2014 Water Research Foundation — 14-Dioxane White Paper
the USEPA Region IX RSL —
0.67 uglL
m Criteria are changing and vary
by State — Georgia = 70 ug/L
September 3, 2016 7 =
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Conceptual Site Model

m Former landfill in the Midwestern US that accepted industrial waste
form 1968 to 1979

m Underlain by thick glacial outwash deposits — sands and gravels
interbedded by till and lacustrine clay [similar to Coastal Plain]

m Aquifer(s) are unconfined to semi-unconfined and the average
advective flow velocity is approximately 1.0 ft/day

end moraine
forming at glacier margin




Conceptual Site Model

A large dilute plume comprised of 1,4-D (up to 420 ug/L) and THF (up
to 340 pg/L)

A main plume is 90-150 feet thick thinning to less than 50 feet beyond
approximately 10,000 feet downgradient

Source control consists of low-perm cap with active gas collection

Long-time monitoring of extensive network of test wells has provided
an understanding of chemical and geochemical conditions changing
over time
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OSWER Directive on MNA and MLOE Framework

OSWER Directive on using Multiple Lines of Evidence
MNA (MLOE) Approach
m Historical site data m Source and plume mass
demonstrating decreasing estimates
trends m Spatial distribution analyses
m Hydrogeological and m Trend and regression analyses

geochemical data that indirectly
support natural contaminant
removal processes

m Microcosm studies for direct
support of specific removal
mechanisms

m Compound Stable Isotope
Analysis

m Fate and Transport Modeling
m Biomarker analyses

Development of a MLOE framework to evaluate the intrinsic
‘biodegradation potential for 1,4-D is vital to: implementing management
“strategies at groundwater s:tes impacted by 1,4-D
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Source Plume Mass Estimates

Source and plume mass estimates were conducted using Environmental
Visualization System/Mining Visualization System (EVS/MVS) calibrated
to time series distributions of 1,4-D and THF

Results indicate substantial decreases in source and downgradient
mass of both 1,4-D and THF

() ; o .
Compound /Reduction (kg) JoReduction (kg)

Near Source Mass (2002 to 2015) Total Plume Mass (2002 to 2015)
Benzene 95% 74%
THF 99% 80%
1,4-DD 82% 38%

Correlation between the collapse of the THF plume (<100 ug/L) and the
accelerated contraction of the 1,4-D plume

Temporal tend analyses and spatial changes indicate natural
degradation of both compounds is occurring within source and
downgradient
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Temporal and Spatial Trends

. Trend ana|yses 0 P-53 - Source Area o P-30 - Main Plume
indicate declining - ” ’ e
source concentrations o AN
since 2004 3" T
= 1,4-D concentrations  i* fo i
are: S 5 ‘ >
m Decreasing or ol o =
stable in 92% of VR s e VR IUE
the teSt WeIIS ;@b éfpb &o& &@5 O;& o AG R > ) ° & » ) & el > o
: \ ¢ FLeFHFFE FFFIFELS TS
between landfill M SAM AN LA LESSAS S L.
and shallow lake . P4 Dowrgadnt e
(201 O to 201 5) 140 4 Tetrahydrofuran . *
a n d ’ +1,4-Dioxane ‘. o

m Decreasing or 3
stable in 88% of {w
the test well § T et
downgradient of . i, o o aeas.
the lake (2013 to M
2015) o
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1,4-D and THF Spatial Distributions (2011 to 2015)

Isopleth analysis
confirms the
lateral extent of
the 1,4-D plume
has decreased
significantly
between 2011
and 2015

1,4-D depletion is

TETRAHYDROFURAN

D 100 - 200 uglL
D 200-300 ugL
> 300 ugll

1,4-DIOXANE

also occurring

immediately
downgradient of

TETRAHYDROFURAN

D 100 - 200 uglL

the landfill margin | = | [ o
evidenced by \
isolated “slug-like”

plumes .
LEGEND
[ ]
e Bf e [SOCONCENTRATION CONTOUR
1000
(ND) SAE
_ APPROXIMATE GROUNDWATER FLOW DIRECTION _ ‘ —
2015 - TETRAHYDROFURAN 2015 - 1,4-DIOXANE
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Geochemical Biodegradation Attenuation

Parameters

Evaluation of geochemical
parameters indicate 2 :
generalized areas within the o
plume with distinctive

geochemical conditions

Source Area:
Groundwater immediately
downgradient of landfill is
dominated by sulfate-
reducing and methanogenic
conditions

This area is becoming more

SULFATE

<1ugl

1-10uglL

10-20ugl

B I

>20ugl

METHANE
10005000 uglL
5000 - 10000 uglL

10000 - 20000 uglL.

B ]

> 20000 uglL

aerobic with rebounding

2011 - METHANE

sulfate and decreasing
methane levels

Downgradient Plume Area:

Also dominated by sulfate-
reducing and methanogenic
conditions

Has a more narrow areal
extent with significant redox
gradient (reducing to

oxidizing), continuing sulfat

depletion and increasing  [-EGEND
methane levels o

MONITORING WELL

ISOCONCENTRATION CONTOUR

CONCENTRATION (ugL)

<fugl

L]
D 1-10ugl
[]
[]

METHANE
10005000 uglL
5000- 10000 uglL

10000 - 20000 ug/L

B ]

> 20000 uglL

2015 - SULFATE
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Fate and Transport Model Simulation

MODFLOW with MT3DMS were used to simulate the fate and transport of
1,4-Dioxane
Model calibrated to historic hydrogeologic and chemical data

Base scenario for transport used varying 1,4-Dioxane concentrations (3 time
periods [TP]) at 3 areas of the landfill.

Solute transport was calibrated to the 2015 dataset with biodegradation
simulated using first-order decay kinetics (half-life for 1,4-Dioxane set to
3,500 days)

Time Period TP-1 TP-2 TP-3

Year 1970 - 1980 1980-2006 2006-2014
Concentration (ppb), South Area 3500 1500 500
Concentration (ppb), Central Area 1200 900 300
Concentration (ppb), North Area 1000 800 600
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Fate and Transport Model Simulation

Simulation of the base
scenario showed
reasonable match to
the observed plume
core and distribution of
1,4-D

Dispersion and dilution
only simulations did
not match 2015 plume
extent or
concentrations

Adding the 1,4-D
biodegradation
process substantially
Improved model
calibration

Results suggest
intrinsic biodegradation
is occurring within the
groundwater plume

1,4-Dioxane

Concentration

(Mg/L)
>500

>300
>200

>85

HHH

5000 feet
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CSIA and Molecular Characterization

Isotopic fractionation of the
1,4-D ranged from -29.15%
to -31.80% with the higher
values 6'3C indicating 1,4-D
biodegradation processes
are likely occurring.

Site data fit to a Rayleigh
model compared the
enrichment factor to
literature values by
Pornwongthong et al., 2011

A clear trend shows 8'3C
values increase with
decreasing fractionation
(i.e., increasing attenuation)
of 1,4-D, indicative of
biodegradation by the
intrinsic microbial
community

013C= ((13¢C/
13C )dsample /(

AD /" /A /NI DD D

-28

-28.5

-29

-29.5

-30

-30.5

&613C (per mill)

-31

-31.5

-32

Model
\ ¢ Site Data

Best Fit Rayleigh Model

— Metabolic Literature Rayleigh

0

0.1

0.2

0‘.3 0‘.4 o‘.s o‘.e 0‘.7
Fraction of 1,4-DD Remaining

08 09 1

CSIA results for laboratory pure culture (purple; (Pornwon
Pornwongthong et al., In review)) and site-specific (green)

%t_hong et al., 2011; .
iodegradation of 1,4-dioxane.

17

€A



Cometabolic Degradation Pathway for 1,4-Dioxane

m Cometabolic degradation
pathways are catalyzed by
methane (sSMMO), propane,
phenol, THF and toluene
monooxygenases

m sMMO oxidizing methane with
O, fortuitously degraded 1,4-D
(Mahendra & Alvarez-Cohen,
2000)

m DXMO and ALDH have been
established as biomarkers for
1,4-D (Gedalanga et al., 2014;
Li et al., 2014)

1,4-Dioxane aerobic degradation pathway
(Grostern et al., 2012; Mahendra et al.,
2007). Similar pathway was reported for
both metabolic and cometabolic processes,
resulting in nearly complete mineralization.

© MO catalyzed
( ?)ﬁon

o

c£ OH oH O
(L J—( f

o o

2-hydroxyethoxyacetaldehyde

2-hydroxy-1,4-dioxane

secondary alcohol | > aldehyde
dehydrogenase l dehydrogenase
@]

(S~

?
1,4-dioxane-2-one 2-hydroxyethoxyacetic acid
(HEAA)

Potential ALDH
catalyzed reaction

OH /O OH /O
Potential ALDH [ fH )i /’<°H
catalyzed reaction o7 ©H Ho  ©
K2—hydroxyethoxy—2—hydroxyacetaldehyde 1,2-dihydroxyethoxyacetic acid
) ~ < -
o Y
CO AN on
2
\_&o
glyoxylic acid

September 3, 2016
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Biomarkers — DXMO and ALDH

DXMO and ALDH quantified using
guantitative polymerase chain reaction
(QPCR)

DXMO and/or ALDH were observed in
15 test wells 93% of which were located
with the plume with elevated 1,4-D

83% of samples positive for both DXMO
and ALDH were from areas of the plume
were 1,4-D was >50 ug/L

m Absence of 1,4-D biomarkers in test
wells with <50 ug/L — anomalous — 57%
of wells lacking biomarkers

m No false positives in test wells with
elevated 1,4-D with biomarkers present
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DXMO and ALDH Biomarkers Distribution

Q (.“ Biomarker Detections
® o O

ALDH

DXMO+ALDH o

Not Detected o

1000

L
SCALE

DXMO and ALDH biomarker detections track well within the 1,4-dioxane plume.
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Biomarkers — sMMO and RNA

m sMMO and RNA were present across
the site and highly prevalent in test
wells; 90% positive detections

m Results for total RNA and sMMO
indicate high concentration of

bacteria in samples ranging from
1.9x1041° 8.6x10°

m 75% of test wells with 1,4-D
concentrations were >50 pg/L were
positive for sMMO
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sMMO and Total Bacteria

‘ 0
Q (Wl“ Gene Detections

Q sMMO o

Total bacteria

sMMO +
Total bacteria o

O %
Not Detected O

/AN

P-12()
P-13(0)

P-14()
P-15(m),
P-16(D) L4

P-22 ()
1000 0 1000 2000 P42 29)
—_—_ ] P-35(21)

!
SCALE FEET ® o

s @ s
W5
P75 @
@8
326

Presence of sMMO and total bacteria in a 1,4-dioxane contaminated aquifer are independent of
the 1,4-dioxane plume.
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