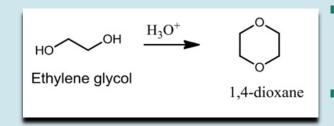
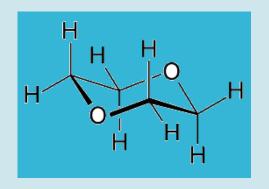
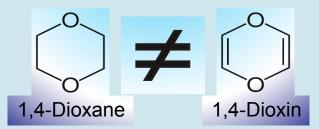


1,4-Dioxane: Multiple Lines of Evidence to Evaluate Intrinsic Biodegradation

11th Annual Georgia Environmental Conference August 24-26, 2016, Jekyll Island, Georgia


Outline of Discussion


- 1,4-Dioxane...What, How, Where and Why?
- Regulatory Status
- Site Conceptual Model
- OSWER Directive on Using MNA and MLOE Framework
- MLOE Evaluation
 - Source and Plume Mass Estimates
 - Temporal and Spatial Trends
 - Spatial Distributions
 - Geochemical Biodegradation Indicator Parameters
 - Fate and Transport Modeling
 - Compound Specific Isotope Analyses
 - Biomarker Analyses
- Conclusions
- Acknowledgements



1,4-Dioxane – What is it?

- First produced commercially in 1929; largest demand 1950-1960 to stabilize methyl chloroform (Mohr et al, 2010)
- Produced when ethylene glycol is heated and reacted with a strong acid catalyst
- Cyclic ether (C4H8O2) highly stable ring
- Clear, flammable, potentially explosive liquid
- Specific gravity 1.033 at 20°C
- Boiling point 101°C
- Miscible in water and hydrophilic (remains in dissolvedphase)
- Very low Henry's Law Constant of 4.88 x 10-6 (atm-m3/ mol)
- 1,4-Diethylene Dioxide, *para*-Dioxane, Diethylene Ether, 1,4-D

1,4-Dioxane – How is used?

midwest

- Stabilize chlorinated solvents e.g., 1,1,1-TCA
- Paint strippers, wood glue, brake cleaning fluids
- Aircraft deicing fluid
- Antifreeze production byproduct
- Pesticides
- Personal-care products
 - Shampoos
 - Detergents (pre-2013 Tide contained 85 ppm)
 - Baby hair and body washes

GEOSCIENCES www.riduestpes.com			Surfactant
Detergents	mg/kg		Shampoos
Tide Laundry Deterge	nt	85**	Clairol Herb
Ivory Snow Laundry D)etergent	31	Aura Cacia Bath
Tide Free Laundry De	tergent	29**	Clairol Herb
Purex Laundry Deterg	gent	25	Relationship
Gain 2X Ultra Laundr	y Detergent	21	Clairol Herb Gerber Grin
Cheer BrightCLEAN	Detergent	20	Aloe Vera B
Era 2X Ultra Laundry	Detergent	14	Healthy Tim
Planet Ultra Liquid De	tergent	6.1	Pansy Flow Sea-Chi Org
Arm & Hammer Laund	dry Detergent	5	Pantene Pro
Wisk 2X Ultra Laundry	y Detergent	3.9	Others
Clorox Green Works	Natural	<0.2	Dial Antibac
Ecos Laundry Deter	gent	<0.2	Disney "Clea Sesame Str

Sun Burst

Direct Uses of 1.4-Dioxane and its Occurrence t Examples, 2010

s mg/kg		Shampoos mg	<mark>/kg</mark>
dry Detergent Aundry Detergent Laundry Detergent hdry Detergent tra Laundry Detergent htCLEAN Detergent a Laundry Detergent a Liquid Detergent hmer Laundry Detergent tra Laundry Detergent tra Laundry Detergent een Works Natural hdry Detergent	85** 31 29** 25 21 20 14 6.1 5 3.9 <0.2 <0.2	Clairol Herbal Essence Body Envy Aura Cacia Natural Aromatherapy Bu	24 ibble 14.9 14 10 5 8.4
Laundry Detergent	<0.2	More info at www.1-4dicxane.com	
Source: Devid Steinman, March 9 th , 2010 ne in consumer products as an impurity of ethoxylated surfactants (ppm)			
rs Weblner Berfes			SIIde 10

1.4-Dioxar Contaminants of Concar

1,4-Dioxane – Where is it in the Environment?

- Not readily in air low volatility
- Not readily in soil vapor breaks down
- Not readily in soil very low sorption
- Primarily in surface water and groundwater

1,4-Dioxane – Why is it in the Environment?

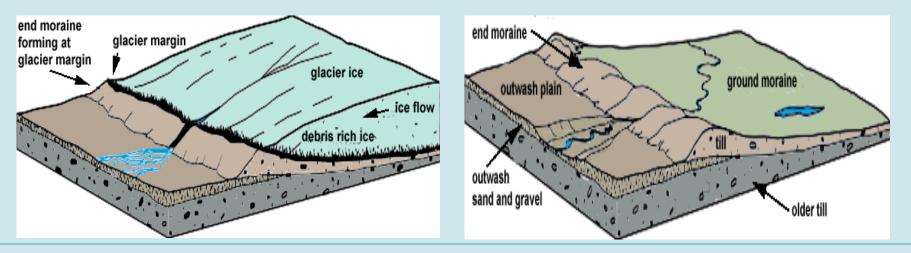
- Waste disposal sites
- Leaking landfills
- Household septic systems
 - Personal care and household products
- WWTP:
 - Release to surface water
 - Land farmed sludge
- Pesticide application

Regulatory Status

- USEPA finalized the human health risk profile for 1,4-D in 2010
- No MCL as of 2016
- Listed on the Unregulated Contaminant Monitoring Rule (UCMR 3) for monitoring public water systems (PWSs) 2012
 - MRL = 0.07 µg/L
 - B2 human carcinogen
 - USEPA 10⁻⁴ lifetime cancer risk = 0.3 mg/L or 0.003 µg/L
- Some states are defaulting to the USEPA Region IX RSL – 0.67 µg/L
- Criteria are changing and vary by State – Georgia = 70 µg/L

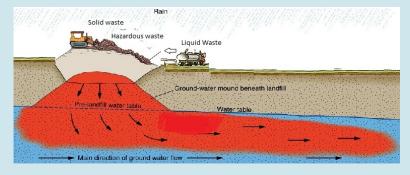
Table 1 - Regulatory Guidelines for 1,4-Dioxane in Water

State	Guideline	Concentration (ug/L)
California	Notification Level	1
Colorado	Drinking Water Standard	3.2
Connecticut	Action Level	3
Maine	Maximum Exposure	4
	Guideline	
Massachusetts	Guideline	0.3
New Hampshire	Proposed Risk-Based	3
	Remediation Value	
New York Dept. of Health	Drinking Water Standard	50
South Carolina	Drinking Water Health	70
	Advisory	


2014 Water Research Foundation – 14-Dioxane White Paper

Conceptual Site Model

- Former landfill in the Midwestern US that accepted industrial waste form 1968 to 1979
- Underlain by thick glacial outwash deposits sands and gravels interbedded by till and lacustrine clay [similar to Coastal Plain]
- Aquifer(s) are unconfined to semi-unconfined and the average advective flow velocity is approximately 1.0 ft/day



Conceptual Site Model

- A large dilute plume comprised of 1,4-D (up to 420 µg/L) and THF (up to 340 µg/L)
- A main plume is 90-150 feet thick thinning to less than 50 feet beyond approximately 10,000 feet downgradient

- Source control consists of low-perm cap with active gas collection
- Long-time monitoring of extensive network of test wells has provided an understanding of chemical and geochemical conditions changing over time

OSWER Directive on using MNA

- Historical site data demonstrating decreasing trends
- Hydrogeological and geochemical data that indirectly support natural contaminant removal processes
- Microcosm studies for direct support of specific removal mechanisms

Multiple Lines of Evidence (MLOE) Approach

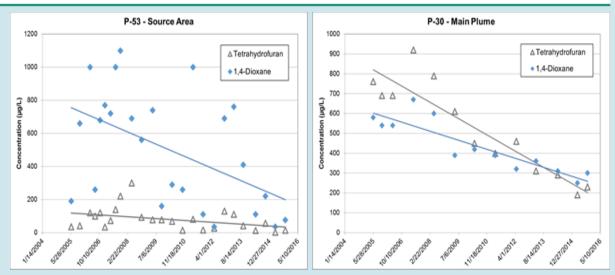
- Source and plume mass estimates
- Spatial distribution analyses
- Trend and regression analyses
- Compound Stable Isotope Analysis
- Fate and Transport Modeling
- Biomarker analyses

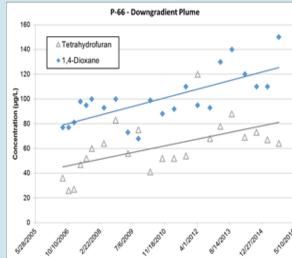
Development of a MLOE framework to evaluate the intrinsic biodegradation potential for 1,4-D is vital to implementing management strategies at groundwater sites impacted by 1,4-D

Source Plume Mass Estimates

- Source and plume mass estimates were conducted using Environmental Visualization System/Mining Visualization System (EVS/MVS) calibrated to time series distributions of 1,4-D and THF
- Results indicate substantial decreases in source and downgradient mass of both 1,4-D and THF

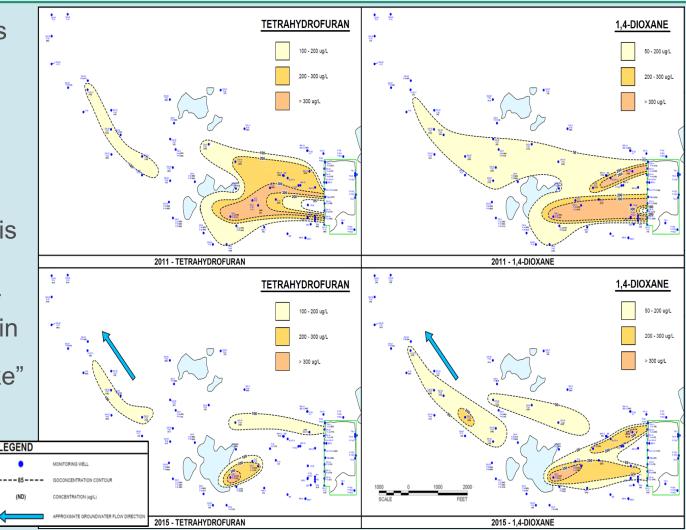
Compound	%Reduction (kg) Near Source Mass (2002 to 2015)	%Reduction (kg) Total Plume Mass (2002 to 2015)
Benzene	95%	74%
THF	99%	80%
1,4-DD	82%	38%


- Correlation between the collapse of the THF plume (<100 µg/L) and the accelerated contraction of the 1,4-D plume</p>
- Temporal tend analyses and spatial changes indicate natural degradation of both compounds is occurring within source and downgradient

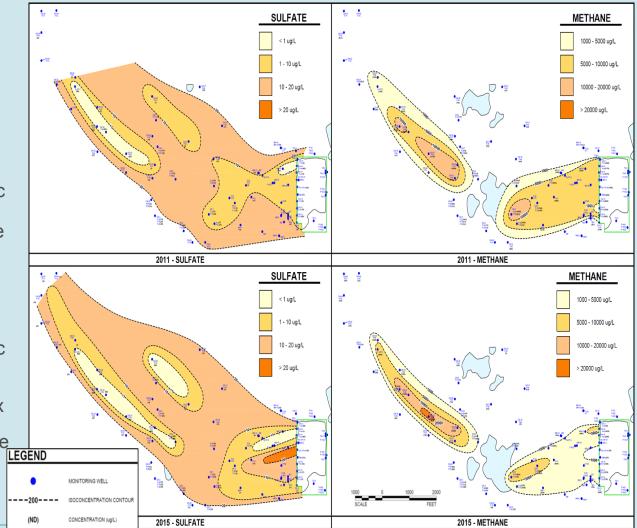


Temporal and Spatial Trends

- Trend analyses indicate declining source concentrations since 2004
- 1,4-D concentrations are:
 - Decreasing or stable in 92% of the test wells between landfill and shallow lake (2010 to 2015) and;
 - Decreasing or stable in 88% of the test well downgradient of the lake (2013 to 2015)


1,4-Dioxane and THF groundwater concentration trends in source and downgradient plume areas.

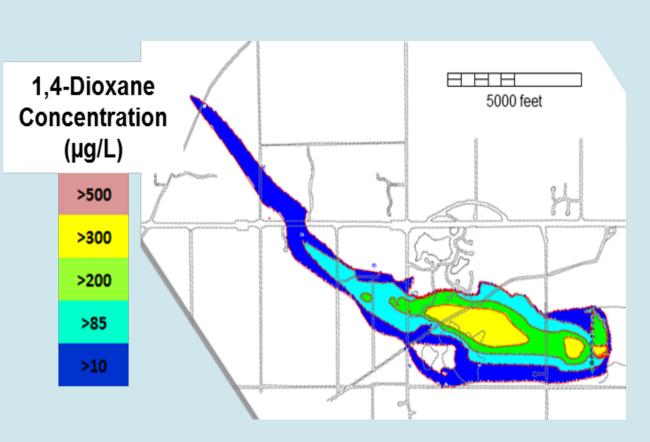
1,4-D and THF Spatial Distributions (2011 to 2015)


- Isopleth analysis confirms the lateral extent of the 1,4-D plume has decreased significantly between 2011 and 2015
- 1,4-D depletion is also occurring immediately downgradient of the landfill margin evidenced by isolated "slug-like" plumes

Geochemical Biodegradation Attenuation Parameters

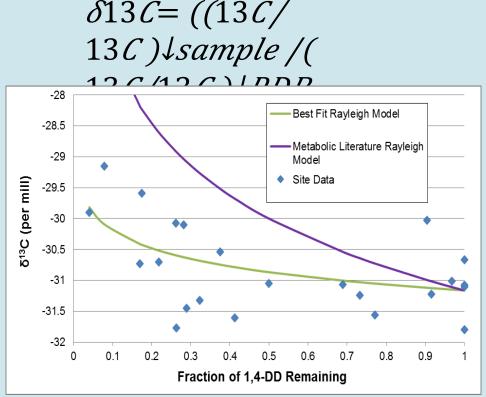
- Evaluation of geochemical parameters indicate 2 generalized areas within the plume with distinctive geochemical conditions
- Source Area:
 - Groundwater immediately downgradient of landfill is dominated by sulfatereducing and methanogenic conditions
 - This area is becoming more aerobic with rebounding sulfate and decreasing methane levels
- Downgradient Plume Area:
 - Also dominated by sulfatereducing and methanogenic conditions
 - Has a more narrow areal extent with significant redox gradient (reducing to oxidizing), continuing sulfate depletion and increasing methane levels

Fate and Transport Model Simulation


- MODFLOW with MT3DMS were used to simulate the fate and transport of 1,4-Dioxane
- Model calibrated to historic hydrogeologic and chemical data
- Base scenario for transport used varying 1,4-Dioxane concentrations (3 time periods [TP]) at 3 areas of the landfill.
- Solute transport was calibrated to the 2015 dataset with biodegradation simulated using first-order decay kinetics (half-life for 1,4-Dioxane set to 3,500 days)

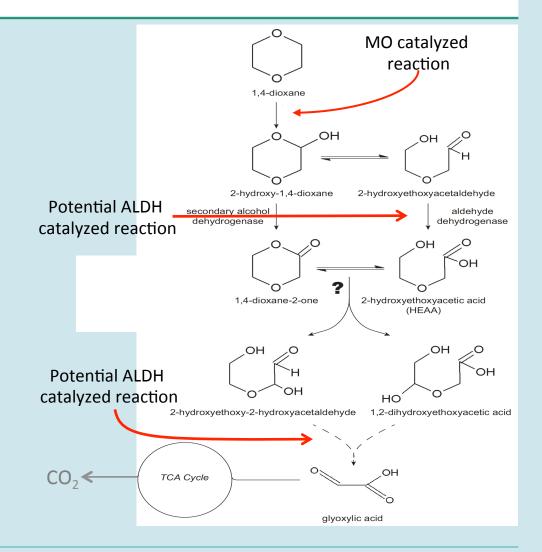
Time Period	TP-1	TP-2	TP-3
Year	1970 - 1980	1980-2006	2006-2014
Concentration (ppb), South Area	3500	1500	500
Concentration (ppb), Central Area	1200	900	300
Concentration (ppb), North Area	1000	800	600

Fate and Transport Model Simulation

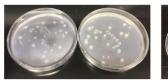

- Simulation of the base scenario showed reasonable match to the observed plume core and distribution of 1,4-D
- Dispersion and dilution only simulations did not match 2015 plume extent or concentrations
- Adding the 1,4-D biodegradation process substantially improved model calibration
- Results suggest intrinsic biodegradation is occurring within the groundwater plume

CSIA and Molecular Characterization

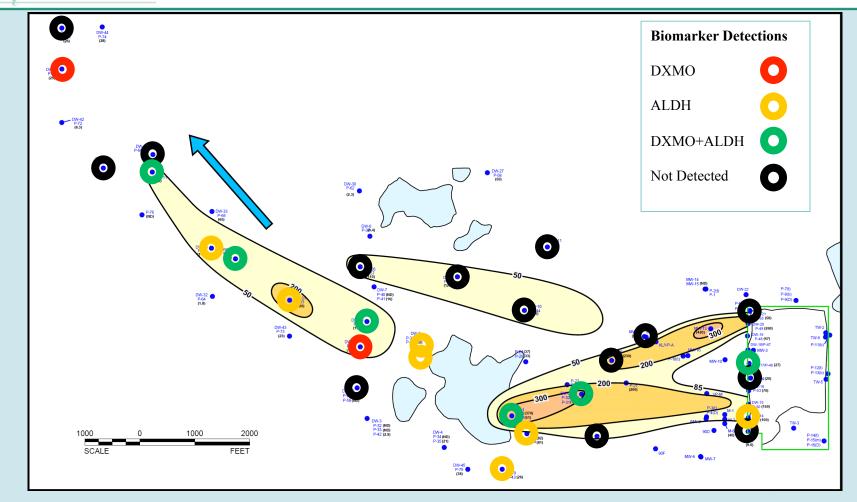
- Isotopic fractionation of the 1,4-D ranged from -29.15% to -31.80% with the higher values δ¹³C indicating 1,4-D biodegradation processes are likely occurring.
- Site data fit to a Rayleigh model compared the enrichment factor to literature values by Pornwongthong et al., 2011
- A clear trend shows δ¹³C values increase with decreasing fractionation (i.e., increasing attenuation) of 1,4-D, indicative of biodegradation by the intrinsic microbial community


CSIA results for laboratory pure culture (purple; (Pornwongthong et al., 2011; Pornwongthong et al., In review)) and site-specific (green) biodegradation of 1,4-dioxane.

Cometabolic Degradation Pathway for 1,4-Dioxane

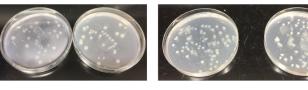

- Cometabolic degradation pathways are catalyzed by methane (sMMO), propane, phenol, THF and toluene monooxygenases
- sMMO oxidizing methane with O₂ fortuitously degraded 1,4-D (Mahendra & Alvarez-Cohen, 2006)
- DXMO and ALDH have been established as biomarkers for 1,4-D (Gedalanga et al., 2014; Li et al., 2014)

1,4-Dioxane aerobic degradation pathway (Grostern et al., 2012; Mahendra et al., 2007). Similar pathway was reported for both metabolic and cometabolic processes, resulting in nearly complete mineralization.



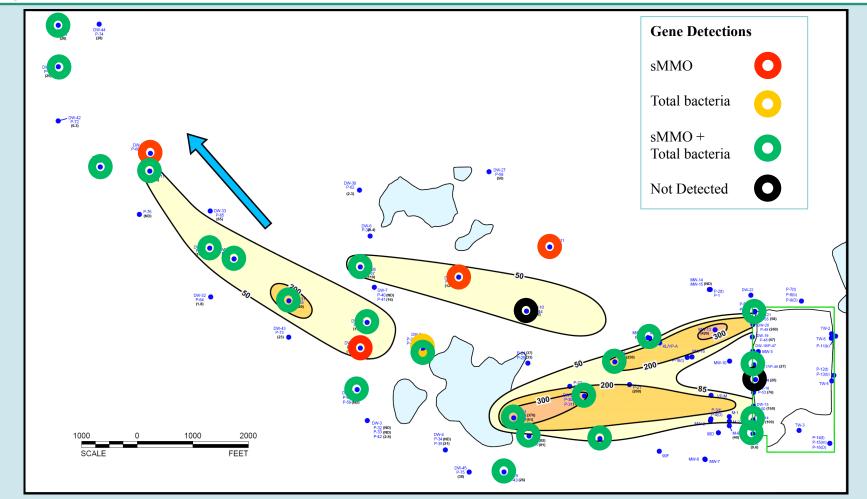
- DXMO and ALDH quantified using quantitative polymerase chain reaction (qPCR)
- DXMO and/or ALDH were observed in 15 test wells 93% of which were located with the plume with elevated 1,4-D
- 83% of samples positive for both DXMO and ALDH were from areas of the plume were 1,4-D was >50 µg/L
- Absence of 1,4-D biomarkers in test wells with <50 µg/L – anomalous – 57% of wells lacking biomarkers
- No false positives in test wells with elevated 1,4-D with biomarkers present

DXMO and ALDH Biomarkers Distribution



DXMO and ALDH biomarker detections track well within the 1,4-dioxane plume.

Biomarkers – sMMO and RNA



- sMMO and RNA were present across the site and highly prevalent in test wells; 90% positive detections
- Results for total RNA and sMMO indicate high concentration of bacteria in samples ranging from 1.9x10⁴ to 8.6x10⁶
- 75% of test wells with 1,4-D concentrations were >50 µg/L were positive for sMMO

sMMO and Total Bacteria

Presence of sMMO and total bacteria in a 1,4-dioxane contaminated aquifer are independent of the 1,4-dioxane plume.

Acknowledgements

- Phil Gedalanga, PhD, Yu Miao, and Shaily Mahendra, PhD – Department of Civil and Environmental Engineering, University of California, Los Angeles
- John Wilson, PhD Scissortail Environmental (formerly USEPA ORD

James Hatton and Bill DiGuiseppi – CH2M

Andrew Madison, PhD and Bob Illes – Golder Associates

Tim Richards 770-496-1893 <u>tim_richards@golder.com</u>

